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1 Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/44,
02-668 Warszawa, Poland
2 Department of Theoretical Physics II, University of Łódź, ul. Pomorska 149/153, 90-236 Łódź,
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Abstract
We analyse an approach aimed at determining statistical properties of spectra
of a time-periodic quantum chaotic system based on the parameter dynamics of
their quasienergies. In particular we show that application of the methods of
statistical physics, proposed previously in the literature, taking into account
appropriate integrals of motion of the parametric dynamics is fully justified,
even if the used integrals of motion do not determine the invariant manifold
in a unique way. The indetermination of the manifold is removed by applying
Dirac’s theory of constrained Hamiltonian systems and imposing appropriate
primary, first-class constraints and a gauge transformation generated by them
in the standard way. The obtained results close the gap in the whole reasoning
aiming at understanding statistical properties of spectra in terms of parametric
dynamics.

PACS numbers: 05.45.Mt, 05.45.−a, 05.40.−a

1. Introduction

One of the most characteristic features of quantum systems which exhibit chaotic behaviour
in the classical limit is an affinity of their spectral properties to random matrices. The famous
Bohigas–Giannoni–Schmidt conjecture [1] states that the statistics of distances between
neighbouring energy levels of a quantum system with chaotic classical limit is well described
by that derived from the random matrix theory (RMT) [2].

A vast numerical and experimental evidence [3, 4] in favour of this hypothesis was
collected during last 20 years. There are also convincing theoretical arguments supporting it
[5, 6]. In the present paper we would like to reconsider one of the first theoretical approaches
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initiated by Pechukas [7] and further developed by Yukawa [8, 9]. The original idea consisted
in deriving differential equations describing parametric level dynamics i.e. the evolution of
eigenvalues, when the parameter controlling the amount of chaos in the system changes,
and applying the rules of classical equilibrium statistical mechanics to the flow described
by the derived differential equations, treating the parameter as a fictitious time in which the
‘evolution’ takes place.

Pechukas started with the quantum Hamiltonian of the form

H = H0 + λV, (1)

where, according to the original interpretation, a time-independent N × N Hermitian matrix
H0 represented a quantum system enjoying integrable classical limit, whereas V was an
integrability-breaking part making the whole system classically fully chaotic when λ attained
appropriately large values. Writing the Schrödinger equation in the form

H |φm〉 = qm|φm〉, (2)

differentiating over the perturbation parameter λ and taking matrix elements in the energy
eigenbasis {|φn〉n=1,...,N } one arrives, after appropriate choice of the (otherwise irrelevant)
phases of the eigenvectors, at a closed system of differential equations,

dqn

dλ
= pn, (3)

dpn

dλ
= −

∑
k �=n

lnklknV ′(qk − qn), (4)

dlmn

dλ
= −

∑
k �=m,n

lmklkn(V(qn − qk) − V(qk − qm)), (5)

where pn = 〈φn|V |φn〉, lmn = 〈φn|V |φn〉(qm − qn) for n �= m, lnn = 0,V(q) = −1/q2, and ′

in (4) denotes the derivative with respect to the argument.
As observed by Yukawa, the dynamical system (3)–(5), in which the parameter λ was

treated as a fictitious time, is a Hamiltonian one, i.e. the equations can be written in the form

dqn

dλ
= {H, qn}, dpn

dλ
= {H, pn}, dlmn

dλ
= {H, lmn}, (6)

with the Hamilton function

H = 1

2

N∑
n=1

p2
n +

1

2

N∑
n,m=1

lmnlnmV(qn − qm), (7)

provided the Poisson brackets among the phase-space variables qn, pn and lmn are given as

{pm, qn} = δmn, {pm, pn} = {qm, qn} = 0, (8)

{lmn, lij } = δinlmj − δmj lin, (9)

{pm, lkn} = {qm, lkn} = 0. (10)

Applying rules of equilibrium statistical mechanics was straightforward; the equilibrium
distribution should be given as the Boltzmann one,

ρ = N exp(−βH), (11)

where H is the Hamilton function of the system (7), β—a fictitious temperature (to be
determined in some way from the initial data), and N—an appropriate normalization constant.
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Integration over the variables pn and lmn led to the equilibrium distribution of energy
levels qn. As shown by Pechukas and Yukawa the resulting distribution coincides with
that provided by RMT for the ensemble of real symmetric matrices with identically and
independently distributed elements (forming the so called Gaussian orthogonal ensemble).

As appealing and straightforward as the above outlined approach might be, one should
not overlook some fundamental obstacles appearing when attempting to formulate it in a more
rigorous way. Let us summarize briefly the most disturbing of them. First, the parametric
motion in the energy levels of (1) is clearly unbounded—the eigenvalues of H grow indefinitely
and, without an additional scaling, no ‘equilibrium’ distribution of eigenvalues of H is attained
(although it might be that the statistics of distances measured in units of the mean distance
approaches some ‘equilibrium’). There is a way of curing the situation—one should turn
to dynamics of rescaled energy levels, which in fact consists in changing the λ-dependence
of H (see [3]). In the present paper we will be interested in the parametric evolution of the
eigenphases of the one-period propagator for the time-periodic systems. The eigenphases
are from the definition bound to the finite interval form 0 to 2π , so the above-mentioned
conceptual (or technical) problem does not arise.

Now the most important remains the following trouble. The postulated Boltzmann
distribution can be validated only if there are no other constants of the motion apart from
the Hamilton function itself, or in other words, when the motion is ergodic on the whole
constant-energy surface. In the case of Pechukas–Yukawa parametric dynamics, as well as in
the case of parametric motion of the periodic systems it is not the case. The dynamical systems
governing the parametric motion of eigenvalues or eigenphases are so called generalized
Calogero–Moser or Sutherland–Moser systems [10]. They possess many additional integrals
of motion, and in fact the motion is ergodic on a much smaller invariant manifold [11]. The
simplest way to include the influence of additional integrals of motion consists of using in
place of canonical ensemble measure (11) its grand-canonical generalization

ρ ∝ exp

{
−

∑
µ

βµIµ

}
, (12)

nailing down the invariant manifold on which the motion takes place by fixing constants of
the motion Iµ in the ensemble mean with the help of Lagrange parameters βµ; one of these Iµ

should be the Hamilton function H. Using the microcanonical ensemble ρ ∝ ∏
µ δ(Iµ − Iµ)

fixing the values of the constants of motion Iµ to their initial values Iµ exactly, rather in
the ensemble mean as (12) does, would be even more appropriate, but technically more
complicated, see [3], chapter 6 for a discussion of the problem.

Integration of ρ over all dynamical variables except the eigenphases yields the desired
distribution of the latter. Such a program was performed in [12, 13] where it was shown that
inclusion of additional known integrals of motion leads to corrections of the order 1/N in
comparison with the predictions of RMT. This result is highly satisfactory, since one expects
convergence to RMT in the limit when the dimension of the matrix N tends to infinity (what
in considered models corresponds to the classical limit of the quantum systems). The only
remaining problem is whether the integrals of motion taken into account in [12, 13] are all,
which are needed to fix (in the ensemble mean) the invariant manifold on which the motion
is ergodic, or in other words, what is the minimal set of independent integrals of motion
determining the invariant manifold (see also [3] for the formulation of the problem). The
independence of the integrals used in the above-mentioned papers was investigated in [14]. In
the present paper we close the last gap by showing that they determine the invariant manifold
to the extent which is appropriate to infer the distribution of eigenphases.
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2. Parametric eigenphases dynamics

We propose to start with the propagator for a particularly simple time-dependent quantum
system in which the integrability breaking part in (1) has a form of periodic instantaneous
kicks, so the whole Hamiltonian reads now

H(λ) = H0 + λV

∞∑
n=−∞

δ(t − nT ), (13)

where V is some constant, Hermitian N × N matrix and T the period of the perturbation.
One of the most prominent examples of such systems is the, so called, kicked top [3, 15, 16]

for which H0 describes a linear precession around one axis, whereas V is a nonuniform rotation
around a perpendicular axis with the angular velocity dependent on the angular momentum.
In effect, both H0 and V are polynomials (respectively linear and quadratic) in the angular
momentum operators. The model is capable of exhibiting chaos in the classical limit and
conforms very accurately to predictions of RMT concerning statistical properties of spectra.
It also does not exhibit the phenomenon of the dynamical localization (observed e.g. in
such models like the kicked rotator and other kicked systems) which would lead to spectral
correlations different from those predicted by RMT (for the explanation of lack of localization
see [3], chapter 7.6 and the literature cited therein).

In the case of a kicked system (13), the one-period unitary evolution operator F (the
propagator), transporting a state vector of the system over one period T of the perturbation,
takes a particulary simple form

F(λ) = exp(−iλV )F0, F0 := exp(−iH0), (14)

where for simplicity we put T = 1 and h̄ = 1.
Of our interest will be the eigenphases (quasienergies) qn(λ) of F(λ),

F(λ)|φn(λ)〉 = exp(iqn(λ))|φn(λ)〉, (15)

where |φn(λ)〉 are eigenvectors of F(λ).
Let a unitary N × N matrix W(λ) diagonalize F(λ),

W(λ)F (λ)W−1(λ) = e−iQ(λ) = diag(e−iq1(λ), . . . , e−iqN (λ)), (16)

Q(λ) = diag(q1(λ), . . . , qN(λ)). (17)

In the following we shall skip exhibiting the explicit λ-dependence when possible. In the case
of a general unitary matrix, the diagonalizing matrix W is not unique even after ordering the
eigenphases: we can always left-multiply it by a diagonal unitary matrix without altering the
result (16).

Let us define following auxiliary matrices:

v := WV W−1 = v†, (18)

l := i eiQ[v, e−iQ] = −l†. (19)

In the following we denote by vmn and lmn, m, n = 1, . . . , N the matrix elements of v and l.
Differentiating (16) over λ we arrive at

dQ

dλ
= i(a − e−iQa eiQ) + v, (20)

dv

dλ
= [a, v], (21)
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dl

dλ
= [a, l], (22)

where

a = dW

dλ
W−1. (23)

By an appropriate choice of the diagonalizing matrix W , we can choose ann = 0.
In the following we shall use the notation vnn = pn. In terms of individual matrix elements

equations (20)–(22) give exactly (3)–(5), despite a different meaning of the variables qn, pn

and lmn [3, 16, 17]. The only difference is that now

V(q) = − 1

4 sin 2 q

2

. (24)

Obviously, the equations again are Hamiltonian with λ treated as a fictitious time, and the
Poisson brackets (8)–(10).

The formal analogy between the autonomous and the kicked case is by no means
accidental. For a unified treatment of parametric in both cases see [18, 19].

Now the system of equations (3)–(5) can be treated as describing dynamics (in the fictitious
time λ) of a one-dimensional gas of particles on the unit circle interacting mutually via the
potential (24), but with evolving ‘coupling strengths’ lmn becoming thus additional dynamical
variables.

3. Statistical mechanics of the gas of eigenphases

As the phase-space trajectory of the fictitious gas evolves in the fictitious time λ, the original
matrix F(λ) changes within a one-parameter family. During the evolution ‘particles of the
gas’ (i.e. in fact, the eigenphases) undergo mutual collisions. Observe that since the potential
in (7) is repulsive, they usually do not cross (i.e. do not exchange positions). Such a real
crossing of two eigenphases is possible only if the respective lmn vanishes. Instead what is
usually observed in the region of parameter λ corresponding to classically chaotic behaviour,
are so called avoided crossings when two neighbouring quasienergies approach a minimal
nonzero distance when λ changes. In fact, as numerical experiments show, for systems which
are classically chaotic such avoided crossings are abundant [20]. It was shown in [20] that the
fictitious time elapsing between consecutive collisions scales as N−ν, ν > 0.

Due to collisions the gas reaches state in which the motion of particles consists of
fluctuations in the vicinity of equilibrium. Let us recall that in the original formulation of
Pechukas i Yukawa it was assumed that H0 is integrable and chaos develops gradually after
switching the perturbation V and increasing the coupling strength λ, so the spectrum of F(λ)

conforms to RMT predictions only after certain ‘relaxation (fictitious) time’ when the phase
space regions of regular motion have shrunk to relatively negligible weight. An ambitious
program was thus designed to actually investigate the transition between spectra of integrable
(λ = 0) and non-integrable (λ—large) cases. Thus, treating λ as a fictitious time, one faces
a problem belonging to non-equilibrium rather than equilibrium statistical mechanics, and
usefulness of tools of the latter could be doubtful. If, on the other hand, as argued in [20],
H0 and V are both non-integrable the initial state of the fictitious gas is already close to
equilibrium. We are thus facing much less demanding tasks of finding the proper equilibrium
distribution, knowing that the equilibrium is reached.

If the motion is ergodic (as it was shown [11] it is indeed ergodic although not on the
whole energy surface), λ averages of spectral characteristics like the distribution of spacings
between adjacent quasienergy levels equal ensemble averages. Strictly speaking, they are
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equal if the fictitious time average is taken for λ → ∞, but obviously they become practically
undistinguishable after sufficiently many collisions, and it is enough to average over an interval
�λ containing finite number (say M) of avoided crossings. Due to above-mentioned scaling
of the fictitious time between collisions, in the semiclassical limit N → ∞ the interval �λ

shrinks to zero what substantiate applicability of the ensemble average predictions to a typical
system at single value of λ.

The most straightforward application of statistical mechanics is to employ the canonical
ensemble for the distribution of the dynamical variables (q, p, l),

ρ(q, p, l) ∝ exp(−βH(q, p, l)). (25)

A straightforward integration over Gauss-distributed p and l gives precisely the eigenphase
density of random-matrix theory [2], i.e.

P(q1, . . . , qN) =
∫

dNp dN(N−1)/2l e−βH ∝
∏
m<n

|e−iqm − e−iqn |. (26)

As explained in the introduction the reasoning would be reasonable, if there were no other
integrals of motion besideH itself. In the case other integrals of motion Iµ exist, the appropriate
ensemble to use is the generalized canonical ensemble (12).

4. Integrals of motion

Equations (3), (4), and (5) are clearly integrable (they can be solved simply by diagonalizing
F at given λ and calculating appropriate matrix elements), so one should expect that there are
much more integrals of motion than the Hamilton function (7) itself. Indeed from (20) and
(21) we see that the quantities

Ik1m1...knmn
= Tr(vk1 lm1 · · · vkn lmn), (27)

are indeed constants of motion, i.e.

d

dλ
Ik1m1...knmn

= 0, (28)

and should be taken into account when constructing the generalized canonical ensemble (12).
As already mentioned, such an ensemble yields the distribution of level spacings as well as
low-order correlation functions of the level density in common with random-matrix theory, to
within corrections of order 1/N [3, 12, 13]. The only problem is whether all integrals nailing
down an invariant manifold are of the form (27).

It was shown that only N2 − N of such integrals are independent [14]. The independent
integrals can be chosen in the form

Ck = Tr vk, k = 1, 2, . . . , N − 1, (29)

Ckm := Tr(eiQvk e−iQvm), k,m = 1, 2, . . . , N − 1. (30)

Using the definition of l (19) it is easy to show that the quantities (30) are linear combinations
of (27).

Let us now count how many variables we have in (3)–(5). The variables qn are real as
eigenphases of the unitary matrix F and there are N of them. Also pn as diagonal elements
of a Hermitian matrix v are real, there are N of them as well. Since l is antihermitian and
off-diagonal there are (N2 − N)/2 matrix elements lmn, but since they are, in the case of a
general unitary matrix, complex, we should count separately their real and imaginary parts.
Finally thus we have N + N + (N2 − N) = N2 + N real variables. Comparing this with the
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number of found integrals of motion (N2 −N) we are tempted to think that, in a generic case,
invariant manifolds are of the dimension (N2 + N) − (N2 − N) = 2N .

On the other hand, in the coordinate frame in which V is diagonal, Vij = Viδij , the motion
described by F(λ) = exp(−iV )U0 involves only N independent frequencies Vk , and takes place
on an N-dimensional torus (and is ergodic on it in a generic case when the eigenvalues of V

are not rationally dependent). It seems thus, we are still missing N independent integrals of
motion.

5. Poisson structure and constraints

Before identifying missing integrals and determining their influence (or lack of) on the
distribution of eigenphases, let us consider more carefully the proposed Hamiltonian
formulation. First, observe that the definition of the manifold on which the level dynamics
takes place as parameterized by the coordinates qn, pn and lmn and equipped with the Poisson
structure (8)–(10) is slightly flawed. From the definition (19) of l we have lnn = 0, but this is
inconsistent with the Jacobi identity which must be fulfilled by (10):

{lpq, {lik, lmn}} + {lik, {lmn, lpq}} + {lmn, {lpq, lik}} = 0. (31)

Indeed, substituting to the above m = k and n = i and using lkk = lii = 0 whenever they
appear on intermediate steps, we arrive at an erroneous result δpqlkq + δiq lpi − δkq lpk − δpi liq ,
instead of zero. Thus we are not allowed to put lnn = 0 from the very beginning as equations
defining our manifold. Instead, if we want to keep the Poisson brackets (10), we should change
the definition (19) to

l = i eiQ[v, e−iQ] + iL, (32)

where L is an arbitrary, real, diagonal matrix, i.e. we introduced N additional dynamical
variables. To understand their meaning let us return to the derivation of the dynamical equations
by diagonalizing matrix W (16), but this time we do not impose additional conditions on W ,
i.e. we do not assume that the diagonal matrix elements ann of a = dW/dλ · W−1 vanish.
Instead we allow them to be arbitrary functions of λ. It should be clear (and indeed we will
show that it is the case), nothing really depends on the choice of ann, since nothing concerning
the eigenvalues should depend on the choice of the diagonalizing matrix.

The resulting equations of motion are derived in the same way as previous ones (3)–(5).
In fact only the third of them is altered and reads now

dlmn

dλ
= −

∑
k �=m,n

lmklkn(V(qn − qk) − V(qk − qm))

+ lmn(amm − ann) + lmn(lnn − lmm)V(qm − qn). (33)

Equations (3), (4), (33) are again Hamiltonian with the same Poisson structure (8)–(10),
but with a new Hamilton function

H = 1

2

N∑
n=1

p2
n +

1

2

N∑
n,m=1

lmnlnmV(qn − qm) +
N∑
j

ajj ljj , (34)

depending on N arbitrary (in general fictitious time-, i.e. λ-dependent) functions ann. The
quantities Cmn (30) are again integrals of motion. In addition, we easily calculate that

{H, lnn} = 0, (35)
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so lnn are also constants of motion. In fact, as it is clear from the previous considerations,
nothing concerning the eigenphases depends on actual values of lnn. We can thus impose
constraints, e.g.

lnn = 0, n = 1, . . . , N. (36)

At this point it is instructive and in fact very natural to describe the encountered situation
from the point of view of Dirac’s theory of constrained Hamiltonian systems [21]. Conditions
(36) are so called primary constraints (i.e. they are not obtained from the equations of motion)
and can be imposed only after evaluating all Poisson brackets to avoid the problems with
the Jacobi identity mentioned at the beginning of the present section. Further, one calculates
easily that

{lmm, lnn} = 0. (37)

Together with (35) it means that the consistency condition

{H, lmm} +
N∑

n=1

ann{lnn, lmm} = 0 (38)

is identically fulfilled and no other constraints, neither primary nor secondary, are produced,
nor additional conditions are imposed on the functions ann(λ).

Due to (37) lnn are automatically first-class constraints (recall that according to Dirac
terminology a quantity is of first class if its Poisson brackets with all constraints vanish, see
[21], p 18). The new Hamilton function (34) involves as many arbitrary functions (in our
case these are functions ann(λ)), as there are independent primary first-class constraints. On
the other hand, first-class primary constraints (36) may be always used to produce a gauge
transformation generated by

G(λ) =
N∑

n=1

θn(λ)lnn, (39)

i.e.

lij �→ eiθi (λ)lij e−iθj (λ), (40)

with arbitrary λ-dependent θk, k = 1, . . . , N .
We expect that an initial physical state determined by initial values of the phase-space

variables (qn, pn, lmn) determines also its all future physical states. Since the Hamilton
function (34) depends on N arbitrary functions, the same may happen to the values of
(qn, pn, lmn) at later (fictitious) times. But the only freedom is now given by the gauge
transformation (40) connecting the variables describing the same physical state of the system
for different choices of the gauge. Hence particular physical properties of the state (e.g.
statistical properties of the distribution of positions, i.e., in our case, eigenphases) should be
gauge independent, and in fact they are, since the gauge transformation does not influence the
relevant variables qn.

To be even more concrete in explaining the role of the gauge transformation for the
present problem let us observe that by assuming lmm = 0 we recovered the previous count
of the number of variables versus dimension of the invariant manifold, since the number of
variables was first increased by N by introducing the diagonal elements of l and then decreased
by the same number by imposing constraints equating them to zero. To fix the (still) remaining
N degrees of freedom let us observe that the gauge transformation (40) does not change the
integrals of motion (in particular the Hamilton function itself) after reducing to the manifold
determined by the constraints (36), retaining also the equations of motion in their original



Spectral statistics from level dynamics 431

form. The transformation is intimately related to the freedom of choice of the diagonalizing
matrix W in terms of a, it leads to

a �→ i
dθ

dλ
+ eiθa e−iθ , θ := diag(θ1, . . . , θ2). (41)

With the help of (40) we can fix in an arbitrary way N (more precisely N −1, but one additional
is determined by the choice of initial point on the unit circle) phases of the variables lnm. Let
us summarize

• number of variables: Nvar = N2 + 2N (the old ones plus the (imaginary parts of) diagonal
elements of l);

• number of independent integrals Cmn: Nint = N2 − N ;
• number of constraints lnn = 0: Nc = N ;
• number of phases fixed by choosing a gauge Ng = N ;

hence, Nvar − (Nint + Nc + Ng) = N = dimension of the invariant manifold.
Now it is clear that integrals of motion Cmn (30) are the only quantities which should

be taken into account when determining the equilibrium distribution. Indeed, as already
mentioned the constraints and the gauge, involving only lmn, do not influence eigenphases,
which is a direct consequence of the independence of the eigenvalues on the choice of the
diagonalizing matrix. Moreover, our choice lnn = 0 reduces the Hamilton function (34) to
originally considered one (7) and the whole reasoning which led, after integration out of p
and l variables and neglecting corrections of order 1/N , to random matrix results for the
eigenphases, is fully vindicated.
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[15] Haake F, Kuś M and Scharf R 1987 Z. Phys. B 65 381
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